• Skip navigation
  • Skip to navigation
  • Skip to the bottom
Simulate organization breadcrumb open Simulate organization breadcrumb close
Assistant Professorship for Intelligent Information Systems
  • FAUTo the central FAU website
  1. Friedrich-Alexander-Universität
  2. School of Business, Economics and Society
  • FB WiSo
  • Mein Campus
  • UnivIS
  1. Friedrich-Alexander-Universität
  2. School of Business, Economics and Society

Assistant Professorship for Intelligent Information Systems

Navigation Navigation close
  • About us
    • Our Team
      • Prof. Dr. Patrick Zschech
      • Nico Hambauer
      • Nazar El Saifi
      • Christopher Wissuchek
      • Alumni
        • Juliane Ort
        • Julian Rosenberger
    • Our Partners
    • Awards
    • Contact
    Portal About us
  • Research
    • Interpretable Machine Learning
    • Industrial Data Science
    • Deep Vision Systems
    • Process Analytics
    • AI Adoption and Use
    • Data Science Qualification
    • Other Research
    • Publications
    • Talks
    Portal Research
  • Teaching
    • Bachelor
      • Business Analytics: Technologien, Methoden und Konzepte
    • Master
      • Development of Deep Vision Systems
      • Natural Language Processing for Business Analytics
      • Business Analytics: Case Studies (Winter Term)
      • Business Analytics: Case Studies (Summer Term)
      • Business Analytics: Research Seminar (Winter Term)
      • Business Analytics: Research Seminar (Summer Term)
    • Theses
    Portal Teaching
  • PhD & Open Positions
    • Doctorate at WIN
    • Research Assistants
    • Student Assistants
    • Job Offers of our Industry Partners
    • School Internship
    Portal PhD & Open Positions
  1. Home
  2. Research
  3. Industrial Data Science

Industrial Data Science

In page navigation: Research
  • Interpretable Machine Learning
  • Industrial Data Science
  • Deep Vision Systems
  • Process Analytics
  • AI Adoption and Use
  • Data Science Qualification
  • Other Research
  • Publications
    • Journal Articles
    • Conference Articles
    • Book Chapters
    • Thesis
    • Others
  • Talks

Industrial Data Science

The research field is concerned with the design, analysis, and use of intelligent information systems based on data science methods and machine learning technologies in industrial application domains.

Publications

  • Bink R., Zschech P.:
    Predictive Maintenance in der industriellen Praxis: Entwicklung eines Prognoseansatzes unter eingeschränkter Informationslage
    In: HMD : Praxis der Wirtschaftsinformatik 55 (2018), p. 552-565
    ISSN: 1436-3011
    DOI: 10.1365/s40702-017-0378-2
    URL: https://link.springer.com/article/10.1365/s40702-017-0378-2
  • Zschech P., Sager C., Siebers P., Pertermann M.:
    Mit Computer Vision zur automatisierten Qualitätssicherung in der industriellen Fertigung: Eine Fallstudie zur Klassifizierung von Fehlern in Solarzellen mittels Elektrolumineszenz-Bildern
    In: HMD : Praxis der Wirtschaftsinformatik (2021), p. 321–342
    ISSN: 1436-3011
    DOI: 10.1365/s40702-020-00641-8
    URL: https://link.springer.com/article/10.1365/s40702-020-00641-8
  • Zschech P.:
    A Taxonomy of Recurring Data Analysis Problems in Maintenance Analytics
    26th European Conference on Information Systems (ECIS) (Portsmouth, 23. June 2018 - 28. June 2018)
    In: Proceedings of the 26th European Conference on Information Systems 2018
    URL: https://aisel.aisnet.org/ecis2018_rp/197/
  • Zschech P., Bernien J., Heinrich K.:
    Towards a Taxonomic Benchmarking Framework for Predictive Maintenance: The Case of NASA’s Turbofan Degradation
    40th International Conference on Information Systems (ICIS) (München, 15. December 2019 - 18. December 2019)
    In: Proceedings of the 40th International Conference on Information Systems 2019
    URL: https://aisel.aisnet.org/icis2019/data_science/data_science/4/
  • Zschech P., Heinrich K., Bink R., Neufeld JS.:
    Prognostic Model Development with Missing Labels: A Condition-Based Maintenance Approach Using Machine Learning
    In: Business & Information Systems Engineering 61 (2019), p. 327-343
    ISSN: 1867-0202
    DOI: 10.1007/s12599-019-00596-1
    URL: https://link.springer.com/article/10.1007/s12599-019-00596-1
  • Horn R., Zschech P.:
    Application of Process Mining Techniques to Support Maintenance-Related Objectives
    14th International Conference on Wirtschaftsinformatik (WI) (Siegen, 23. February 2019 - 27. February 2019)
    In: Ludwig T, Pipek V (ed.): Proceedings of the 14th International Conference on Wirtschaftsinformatik, Siegen: 2019
    DOI: 10.25819/ubsi/1016
    URL: https://aisel.aisnet.org/wi2019/specialtrack01/papers/6/
  • Zschech P.:
    Data Science and Analytics in Industrial Maintenance: Selection, Evaluation, and Application of Data-Driven Methods (Dissertation, 2020)
    URL: https://nbn-resolving.org/urn:nbn:de:bsz:14-qucosa2-723182
  • Wanner J., Heinrich K., Janiesch C., Zschech P.:
    How Much AI Do You Require? Decision Factors for Adopting AI Technology
    41st International Conference on Information Systems (ICIS) (Virtual Conference, 13. December 2020 - 16. December 2020)
    In: Association for Information Systems (ed.): Proceedings of the 41st International Conference on Information Systems 2020
    URL: https://aisel.aisnet.org/icis2020/implement_adopt/implement_adopt/10/
  • Janiesch C., Zschech P., Heinrich K.:
    Machine Learning and Deep Learning
    In: Electronic Markets 31 (2021), p. 685–695
    ISSN: 1019-6781
    DOI: 10.1007/s12525-021-00475-2
    URL: https://link.springer.com/article/10.1007/s12525-021-00475-2
  • Harl M., Herchenbach M., Kruschel S., Hambauer N., Zschech P., Kraus M.:
    A Light in the Dark: Deep Learning Practices for Industrial Computer Vision
    In: Proceedings of the 17th International Conference on Wirtschaftsinformatik (WI) 2022
    Open Access: https://aisel.aisnet.org/wi2022/student_track/student_track/33/
    URL: https://aisel.aisnet.org/wi2022/student_track/student_track/33/
  • Sager C., Zschech P., Kühl N.:
    labelCloud: A Lightweight Labeling Tool for Domain-Agnostic 3D Object Detection in Point Clouds
    In: Computer-Aided Design and Applications 19 (2022), p. 1191-1206
    ISSN: 1686-4360
    DOI: 10.14733/cadaps.2022.1191-1206
    URL: http://cad-journal.net/files/vol_19/CAD_19(6)_2022_1191-1206.pdf
FAU Erlangen-Nürnberg
Assistant Professorship for Intelligent Information Systems

Lange Gasse 20
90403 Nürnberg
  • Imprint
  • Privacy
  • Accessibility
Up